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Adaptive mesh and algorithm refinement (AMAR) embeds a particle method
within a continuum method at the finest level of an adaptive mesh refinement (AMR)
hierarchy. The coupling between the particle region and the overlaying continuum
grid is algorithmically equivalent to that between the fine and coarse levels of AMR.
Direct simulation Monte Carlo (DSMC) is used as the particle algorithm embedded
within a Godunov-type compressible Navier—Stokes solver. Several examples are
presented and compared with purely continuum calculatioBa99s Academic Press

1. INTRODUCTION

When a large range of scales must be spanned, computational fluid dynamics (C
calculations often employ local mesh refinement so that a fine grid is used only in tf
regions that require high resolution. However, hydrodynamic formulations break dowt
the grid spacing approaches the molecular scale, for example, the mean free patt
gas. This paper describes adaptive mesh and algorithm refinement (AMAR), in whi
continuum algorithm, such as a Navier—Stokes solver, is replaced by a particle algori
such as direct simulation Monte Carlo (DSMC), at the finest grid scale.

As an illustration, consider the flow of a gas through a microscopic channel, sucl
between the head and platter in a disk drive [1]. The continuum description of the flow
the quantities derived from it, such as wall drag, are not accurate whenever the Knu
number Kn> 10-2, where Kn= A /L, A is the mean free path ardis the channel width [2]
Kinetic theory extensions to the continuum equations (e.g., Burnett expansion) have
limited success [3]. Another approach is to introduce kinetic corrections to the bounc
conditions but these are often not accurate [1, 4, 5] and can even give guatitative
features of the flow [6].
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Rigorously, a kinetic formulation is required at microscopic scales, however, at hyc
dynamic scales the continuum approximation is valid. AMAR uses a particle methoc
regions of a flow requiring microscopic resolution and a continuum method, with vary
levels of refinement, to evaluate the flow at larger scales. Thus, AMAR provides an ef
tive methodology to span a broad range of length scales while retaining the advantag
a kinetic formulation where required.

At both rarefied and atmospheric densities the best particle method to use is direct
ulation Monte Carlo. DSMC is several orders of magnitude more efficient than moleci
dynamics for the simulation of gases; however, it remains several orders of magnitude
efficient than continuum CFD methods. For these reasons several researchers have it
gated coupling the DSMC algorithm to a hydrodynamic solver. There exist loosely couy
schemes for which a continuum method provides a boundary condition fora DSMC cod
or in which the two methods calculate different quantities in the problem (e.g., continu
method for the flow field and a particle method for the chemistry [8]). However, the foc
here is on strongly coupled schemes where the DSMC and continuum methods simul
ously evaluate different regions of the flow and continuously exchange information ac
an interface.

Wadsworth and Erwin first demonstrated such a scheme in calculating a one-dimens
shock wave profile [9] and a two-dimensional slit flow [10]. Related hybrid schemes w
developed by Eggers and Beylich [11], Bourgeal.[12], Le Tallec and Mallinger [13], and
the author [14, 15]. Hash and Hassan performed detailed studies of a DSMC/Navier-S
hybrid using the Marshak condition for resolving fluxes [16]. They also demonstrated |
a Chapman-Enskog distribution was required when the viscous fluxes were significar
that a simple Maxwellian distribution was adequate when the continuum region was
approximated by the Euler equations [7]. Special purpose continuum solvers, whick
closely tied to kinetic theory, have been proposed for use in hybrid schemes. Specific
the kinetic flux-vector splitting (KFVS) [17] and adaptive discrete velocity (ADV) Eule
solver [18] have been tested.

While adaptive mesh and algorithm refinement may superficially resemble other hy
schemes, it differs fundamentally from all of them. First, AMAR is specifically designed
work as a multi-level method for simulating systems whose length scales span several c
of magnitude. AMAR is a natural extension of adaptive mesh refinement (AMR) and
easily be implemented within an existing AMR code. Second, the AMAR coupling betwe
the particle and continuum regions conserves mass, momentum, and energy to within re
off error. Not only does this eliminate any systematic drift in the solution (e.g., mass loss
closed system), it also improves the numerical stability of the method. Third, the contint
solver can easily be changed to any conservative (i.e., flux-based) scheme, either impli
explicit. Only four basic subroutines, outlined at the end of Section 4, couple the contint
solver to the particle algorithm. Finally, some hybrids schemes are limited, in theory
in practice, to the simulation of one- or two-dimensional problems; AMAR is fully thre
dimensional.

This paper presents the framework for adaptive mesh and algorithm refinement
illustrates its use by incorporating a DSMC simulation at the finest level of an adap
mesh refinement hierarchy. The DSMC algorithm and AMR scheme are briefly descr
in Sections 2 and 3. The AMAR technique for coupling these methods is presente
Section 4 and results from AMAR calculations in Section 5. Finally, Section 6 descri
future work.
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2. DIRECT SIMULATION MONTE CARLO

Direct simulation Monte Carlo (DSMC) is a well-established algorithm for computing g
dynamics at the level of the Boltzmann equation. For completeness, this section pre:
a summary of the method, emphasizing those elements that are relevant to formul
AMAR. The DSMC algorithm is described in detail in [19]; see [20] for a tutorial an
[21, 22] for reviews.

In DSMC, the state of the system is given by the positions and velocities of partic
{ri, vi}. First, the particles are moved as if they did not interact, that is, their positions
updated ta; + vi At. Any particles that reach a boundary are processed according to
appropriate boundary condition. Second, after all particles have moved, a given nur
are randomly selected for collisions. This splitting of the evolution between streaming
collisions is only accurate when the time stey, is a fraction of the mean collision time
for a particle.

The concept of “collision” implies that the interaction potential between particles
short-ranged. In the simulations presented here the particles are taken to be rigid sphe
diameterr . Extensions to other representations of the molecular interaction may be use
give more realistic transport properties [19] and equations of state [23, 24]. For hard sp
particles, the number of collisions amoNgparticles in a cell volum¥ during atime step is

N2 o2(v,) At

M= )
2V

@
where(v;) isthe average relative speed among the particles. Bird’s “no time counter” met
[19] for computing collision frequency is used since it avoids the explicit evaluati¢w of

Particles are randomly selected as collision partners with the restriction that their n
separation be a fraction of a mean free path [25]. This restriction is enforced by ensuring
cell dimensions are less than a mean free path. For hard spheres, the probability of sele
a given pair is proportional to the relative speed between the particles. DSMC evalu
individual collisions stochastically, conserving momentum and energy and selecting
post-collision angles from their kinetic theory distributions. For hard spheres, the ce
of mass velocity and relative speed are conserved in the collision with the direction of
relative velocity uniformly distributed in the unit sphere. This Markov approximation
the collision process is statistically accurate so long as the number of particles in a colli
cell is sufficiently large, typically over twenty [26, 27].

These constraints on time step, cell size, and number of particles make DSMC cor
tationally expensive unless the physical domain is small or the gas is highly rarefied.
example, the efficiency of the method can be judged by the observation that a simulatic
air at standard temperature and pressure requires abbpaiiitles per cubic micron and
10* time steps per microsecond.

3. ADAPTIVE MESH REFINEMENT

In a computational fluid dynamics calculation, the standard hydrodynamic variables
density p, fluid velocity u=[ux uy u;], and pressuré®. From these one may obtain the
conserved densities of mags momentump, and energye. The compressible Navier—
Stokes equations may be written in the conservative form [28],

au

— +V-F=V.D, 2
T )
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whereU is a vector composed of the conserved densiftes,(F*, F¥, F?) represent the
hyperbolic flux terms, an® = (D*, DY, D?) the parabolic flux terms. More precisely,

0 PpUx 0
Px ,Oui +P Txx
U=|p [: F=[ puuy, [: D'=| 1wy [ @)
Pz PUxU; Txz
€ (e+ P)uy Ui Txi — Ox

wheret andq are the stress tensor and heat flux, respectively, with similar expressions
the other flux terms.

In the AMAR methodology presented here, the compressible Navier—Stokes equa
are integrated using a second-order unsplit Godunov method to evaluate the hypel
fluxes [29] and a standard finite difference approximation using Crank—Nicolson temp
differencing to treat the parabolic terms. Thus, the discretization has the form

x,n+3 x,n+3 y.n+1 y.n+1 zn+3 zn+3
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Az ’

The implicit discretization of the parabolic terms requires the solution of a nonlinear <
tem of equations which is easily treated using standard nonlinear multigrid ideas.
computation of the hyperbolic flux terms using the second-order Godunov procedure |
explicit procedure so that the integration algorithm has a time step restriction based on
considerations for the Euler equatiofiz= 0).

For problems in fluid dynamics where there are a large range of scales that mus
spanned, some form of adaptive mesh refinement is used to localize high resolutic
the areas where it is required. In the AMR methodology, a block-structured hierarch
form of refinement, first developed by Berger and Oliger [30] for hyperbolic partial d
ferential equations, is used. A conservative version of this methodology for gas dynal
was developed by Berger and Colella [31] and extended to three dimensions ey &ell
[32].

AMR is based on a sequence of nested levels of refinement with successively finer sp:
in both time and space. In this approach, fine grids are formed by dividing coarse cell
a refinement ratiar, in each direction. Increasingly finer grids are recursively embedd
in coarse grids until the solution is adequately resolved with each level contained in
next coarser level. An error estimation procedure based on user-specified criteria eval
where additional refinement is needed and grid generation procedures dynamically c
or remove rectangular fine grid patches as resolution requirements change.

The adaptive time-step algorithm advances grids at different levels using time s
appropriate to that level based on CFL considerations. The time-step procedure can
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easily be thought of as a recursive algorithm, in which to advancell¢leslel| =0 being
the coarsest and=I 5« the finest), the following steps are taken:

e Advance level in time as if it is the only level. Supply boundary conditions br
from levell — 1 if levell > 0, and from the physical boundary conditions.
o If | <lmax
—Advance levell(+ 1) r times with time stepAt'** = 2 At' using boundary con-
ditions forU from levell, and from the physical domain boundaries.
—Synchronize the data between levelzndl + 1, and interpolate corrections to
higher levels ifl + 1 < Imax.

The adaptive algorithm, as outlined above, performs operations to advance each
independent of other levels in the hierarchy (except for boundary conditions) and t
computes a correction to synchronize the levels. Loosely speaking, the objective in
synchronization step is to compute the modifications to the coarse grid that reflect
change in the coarse grid solution from the presence of the fine grid. There are two ste
the synchronization. First, the fine grid is averaged onto the coarse grid; i.e., the conse
guantities on coarse grid cells covered by fine grid are replaced by the average of the
grid.

The second step of the synchronization, called “refluxing,” corrects for the difference
coarse and fine grid fluxes at the boundary of the fine grid. The basic approach used
is an analog of the procedure used by Almget¢al.[33] extended to the case of nonlineatr
parabolic terms. During the course of the integration step, flux information is saved at
faces on the boundary of the coarse and fine grid to obtain the difference between the f
calculated at levdl and the corresponding leviel- 1 average. The latter are the fluxes a
levell 4+ 1 time averaged over the levelime step and spatially averaged over the area
the levell face. This time step- and area-weighted flux difference is

1
(Sf'l — At' <_AI (FFH-%J _ E(Dr'l,l + Dn+1,l)>

12 . 1
- A|+l Frn+k+:|+1 _ = Drn+k,|+1 Drn+k+1,|+1 , 5
+ ; E E < 2 2( + ) (5)

k=0 faces

whereF andD are the components of the convective and diffusive fluxes correspondint
the faces in Eq. (4) and is the signed area of the face of a grid cell where the sign deper
on the direction normal to the face, facing away from the fine grid. The sum over face
Eq. (5) is a sum over all fine grid faces that cover the coarse face.

The flux correctiong 7!, represents the difference between the flux used to update
coarse cells adjacent to the fine grid and the fluxes that are computed on the fine
To ensure stability for low Reynolds numbers and to match the implicit, Crank—Nicols
character of the diffusive step an implicit solve is performed

AtSF
AXAYAZ’

At
SU— S V- DU +5U) = (6)

whereU"+! is the coarse grid solution after averaging the fine grid solution but beft
computing the correction. The coarse gtitf;*, is updated by

UMt = U+t 4 5U. (7
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The fine grid is updated by using a conservative scheme that interpolates the correcti
the fine grid and to other finer grids contained within the fine grid. Finally, to capture
effect of the synchronization of leveland higher on level — 1 the flux correctionsF'—1
are not updated until after the synchronization of leVelad| + 1.

4. ADAPTIVE MESH AND ALGORITHM REFINEMENT

Adaptive mesh and algorithm refinement (AMAR) uses the same basic algorithmic out
as AMR, as presented in the previous section, except that the finest grid level is evall
by a DSMC calculation. For the purposes of exposition, a DSMC region is conside
embedded within a single-level continuum grid.

At the start of a continuum time step, fluxes are computed at each cell face and usi
advance the conserved densities (mass, momentum, and energy) on the grid. All contii
cells are advanced bitcqny, including those that overlay the DSMC region. For numeric:
stability, Ateont= CAX/|C+ v| wherec is the sound speed,is the maximum fluid speed,
andC < listhe Courant number. Next, the particle calculation advances to the same tim
taking several, smaller time stepst,ar. ThoughAt,ar is a fraction of the mean collision
time, for the finest continuum gridx ~ 1 so Atc~ Atyar. For the AMAR calculations
presented in this paper, the width of the smallest continuum cells is two mean free p
and Ateone < 4Atpart

The DSMC region is surrounded by buffer cells (see Fig. 1). At the beginning of e:
DSMC time step, particles are created within the buffer cells according to the hydrc
namic values (density, fluid velocity, temperature) and their gradients on the overlay
continuum grid. Since the continuum grid advances first, these values are time i
polated between continuum time steps as DSMC is subcycled to reach the same
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FIG. 1. Schematic showing a DSMC region and its surrounding buffer cells embedded within a contint
mesh. Continuum cells (dashed lines); DSMC collision cells (dotted lines); DSMC/continuum interface (s
line); buffer cell sheath (dot-dashed line).
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as the continuum solver. Buffer cells do not need to be entirely filled with particl
Only particles within a sheath near the DSMC region are generated with the thickr
of this sheath determined adaptively. The particle velocities are drawn from the ap
priate distribution for the continuum solver: the Maxwell-Boltzmann distribution for t
Euler equations and the Chapman—Enskog distribution [34] for the Navier—Stokes e
tions.

Next, particles in both the main and buffer regions move a single DSMC time steg
a particle crosses the interface between these regions, that particle contributes to thi
for the coarse grid face through which it passes. The contribution of all particles cros:
a coarse grid face during the DSMC steps plays the same role as the sum over fine
continuum grid faces in Eq. (5). After moving the particles, those remaining in or those
moved into the buffer region are discarded and collisions among the remaining parti
are evaluated. The cell structure used in evaluating DSMC collisions is separate from
independent of the continuum grid.

A technical but important issue that any particle/continuum hybrid must confront is
“corner problem.” Specifically, when a particle passes into the continuum region, it char
the mass, momentum, and energy density in a continuum cell. In AMAR, this particl
contribution is formulated as a flux on the cell side that lies on the interface between
continuum and particle regions. A similar flux contribution arises when a particle cres
within the buffer region crosses this interface. For example, in Fig. 2, when patrticle 1 pa
from cell A to D (or vice versa), it contributes to the flux on the side between these ce
A more complicated case occurs when particle 2 passes from cell B to D. AMAR upd:
the flux on the side between cells B and E since that is where the particle crosse:
interface. Finally, consider particle 3, which passes near the corner traveling from ce
to F. This particle contributes to the flux between cells B and C. There cannot be a
contribution for cell F since it has no side bordering the particle/continuum interface. T
last example illustrates that fluxes must be evaluated where a particle crosses the inte
and not from the cell that the particle moves into. If a simulation does not handle the cor
correctly, steady state flows can exhibit a spurious drift, such as loss of mass in a cl
system.

n]) I[:

FIG. 2. Particles and continuum cells near a corner of the DSMC/continuum interface.
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Whenthe DSMC region has advanced for an entire continuum grid time step, two sync
nizations are performed, analogous to the AMR case described above. First, the contir
cells that overlay the central DSMC region are reset according to the conserved den
computed from the set of particles within each continuum grid cell. Second, Eq. (6) is so
to obtain a correction to the fluxes for the continuum grid using as right hand side

sF = At (—A' (Fn+%.l _ %(Dn,l _ Dn+l,l)>> I Z]:P’ ®)
p

where the sum represents the flux of the conserved quantities through carried by pgrtic
passing through the coarse face during the DSMC updates. Equation (7) is used to u
the conserved quantities on the coarse grid.

From the implicit solve in Eq. (6), the values&il on coarse cells covered by the DSMC
region generate a correctiép andse in the momenta and energy for DSMC cells; ther:
is no mass correction because mass does not diffuse. The velocity of each particle wit
given continuum cell is corrected as

V= (V) +a(v—(v), 9)
where(V') = (v) + ép/p,
B 1/2
a=<1+ w> , (10)
€— &

with e« = 2p[(V)|?, & = 3p|(v))|?, ande= p(|v|?); the angle brackets indicate average
over particles within a continuum cell. These synchronization steps guarantee that, i
absence of external sources, total mass, momentum, and energy are conserved to
round-off error in the computational domain. Note that when an explicit solver is us
as with the Euler equations, the correction is localized to the coarse cells adjacent t
DSMC region so no correction to the particles is required.

In summary, the interaction between the continuum solver and the DSMC regiol
encapsulated into four routines: (1) Passing the time-interpolated state to the particle k
cells; (2) Passing the momentum and energy corrections, as computed in the implicit li
solve, to the DSMC region; (3) Receiving the fluxes recorded when particles cross
DSMC interface; (4) Receiving conserved densities for continuum cells overlaying
DSMC region. This coupling of the continuum grid with DSMC makes the latter app
just like any level of refinement in the purely continuum case.

5. NUMERICAL EXAMPLES

This section describes a series of numerical experiments that were performed to tes
demonstrate the adaptive mesh and algorithm refinement framework. In each case a:
DSMC region is embedded within a continuum grid on which either the Euler or Navi
Stokes equations are computed. In general, the particles in the buffer regions are gent
using the Chapman—-Enskog distribution [34]. However, for the purpose of comparis
when the Euler equations are used, both the Maxwell-Boltzmann and Chapman—Er
distributions are considered. In the last example (flow past a sphere) the continuum s
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uses two grid levels so the DSMC region is embedded within a fine grid which is its
embedded in a coarse grid. For all other examples, a single continuum grid is used.
The particles are treated as hard spheres of diameted.366 nm and mass = 6.63 x

10-22g (argon parameters). The reference densitygis: 1.78 x 102 g/cn?; the mean
free path at this density iy = 62.5 nm. The reference temperatureljs= 273 K and the
reference sound speeddg= 3.08 x 10* cm/s. The equation of state is the ideal gas lav
P = pkT/m, wherek = 1.3806x 1022 J/K is Boltzmann’s constant. The viscosity anc
thermal conductivity are

5 mkT 15k
P=Tea2\ w0 T (11)

as given by the Chapman—Enskog theory.

All the simulations are fully three dimensional with at least 16 continuum grid cells
each direction. When a single grid is used, these cells are cubes of lergt®1; when
there are two continuum levels, the cells are cubes of lengttand 2Ax. The reference
CFL time step isAtg= AX/Co=4.06 x 10719 s and the Courant number is 0.25 for all of
the runs. With this Courant number the DSMC region typically performs from one to fc
time steps for each continuum time step.

At the reference density, the DSMC region contains 100 particleapdihe collision
frequency is computed using cubic cells of lengtBag, collision partners are selected
within cubic subcells of length.Brg, and statistical samples are measured in cubes
length Q8%¢. The total number of particles in the various cases ranges fremi® to
6 x 10°.

5.1. Thermodynamic Equilibrium

The simplest test case is thermodynamic equilibrium: the system is initially at rest v
constant density and temperature. The continuum grid is 32 x 32 with periodic bound-
ary conditions on all sides. The DSMC region is a cube embedded in the continuum sc
within the 4x 4 x 4 cells at the center of the system. Although the system is initially ur
form, DSMC produces spontaneous fluctuations with the correct equilibrium spectrum |
After 2000 continuum time steps, the total mass in the simulation is conserved to b
than one part in 10and the total energy to better than one part i 10

When the continuum solver employs the Navier—Stokes equations, the system rema
thermodynamic equilibrium. However, when the Euler equations are used in the contin
region, the number of particles in the DSMC region slowly increases and the energy del
decreases so that thermodynamic equilibrium is not maintained. Since total mass, mo
tum, and energy are strictly conserved (to within round-off error), the mass in the contint
region decreases and the energy density increases. This rise in the number of DSMC
ticles as a function of time is shown in Fig. 3. While the Navier—Stokes/AMAR presen
the correct average, after 2000 steps the number of DSMC particles in the Euler/AV
increases by 1.1% when using the Maxwell-Boltzman distribution in the buffer region
by 0.7% when using the Chapman—Enskog distribution. This error is reduced when
simulation uses more particles per cubic mean free path. For the runs displayed in F
each continuum cell that overlays the DSMC region contains, on average, 800 particle

The anomalous drift away from thermodynamic equilibrium that is observed using
Euler equations isiot a flaw in the AMAR methodology. Other DSMC/Euler coupling
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FIG. 3. Number of particles in the DSMC region versus time step for thermodynamic equilibrium. Eu
AMAR using Maxwell-Boltzmann %), Chapman-EnskogH) compared with the Navier—Stokes AMAR))
which varies about the initial value (dashed line).

schemes also exhibit this drift at equilibrium [36, 37]. The effect is due to the fact t
fluctuations in the DSMC region transmit thermal and mechanical energy to the contini
region while only mechanical energy is returned since the Euler equations have no
flux even when a temperature gradient is present. Thus the thermal energy in the contil
region rises and the density falls so as to maintain mechanical equilibrium (i.e., con:
pressure). This spurious effect is masked when there is a net flow across the syste
the simulation is initialized with a uniform fluid speed abBcy, after 2000 time steps the
number of DSMC particles in the Euler AMAR increases by 0.6% when using the Maxwe
Boltzman distribution in the buffer region and by 0.4% when using the Chapman—Ens
distribution.

5.2. Impulsive Piston

The first non-equilibrium case considered is a gas initially at the reference density
temperature and moving at Mach 2 toward a thermal wall held at fixed temperature (Fig.
This is equivalent to an impulsively started piston traveling into a gas initially at rest, in
reference frame of the piston. A normal shock develops in front of the wall and the sh
front moves into the gas. Basic shock relations [38] give a shock speed of Mach 3, a de
ratio of 3 across the shock, and a temperature ratio 3 .Ilhe reference temperature in the
undisturbed gas is 273 K so the wall temperature is fixed at 1001 K. The boundary cond
on the opposite side of the system is a plane of reflection symmetry. The flow near
boundary (ararefaction fan) does not affect the shock wave within the time of the simula
and thus is not analyzed. Periodic boundary conditions are applied in the other directi
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FIG. 4. Geometry for (a) impulsively started piston; (b) Rayleigh problem; (c) flow past a sphere.

The continuum grid contains 10016 x 16 cells leading to a system of length 12500 nir
width and depth of 2000 nm. The DSMC region, located next to the wall where the sh
forms, has width and depth of 2000 nm and length of either 625 or 1250 nm, equiva
to 5 or 10 continuum cells. In the larger DSMC simulation the number of particles
initially 2 x 10° and finally 6x 10° when the shock passes into the continuum region. F
comparison, a calculation with only the Navier—Stokes solver and no DSMC region is
considered.

Figures 5 and 6 show the temperature and density profiles near the piston wa
t=2x 109 s. For the AMAR run with the 5 cell DSMC region, the shock is just passir
out of the particle region and it is in the center of the region for the 10 cell DSMC rt
The latter run is practically equivalent to a purely DSMC simulation with fixed reservo
since the values in the Navier—Stokes region are constant. The AMAR runs are in ¢
agreement with each other; as expected, the temperature profile in the entire continuul
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FIG. 5. Temperature versus position for the impulsively started pistdn=e2 x 10~° s. AMAR run with
5-cell DSMC region (O); AMAR run with 10-cell DSMC region ¢); and purely continuum with no DSMC run
(+). Open symbols, DSMC data; filled symbols, AMAR continuum data. Dashed lines indicate the location of
particle/continuum interface for the AMAR runs.



ADAPTIVE MESH AND ALGORITHM REFINEMENT 145

0.006 :

0.005

0.004 -~ o

Density

0.003 [- L

0.002

+o@

0@000000‘

0.001 L

o
3]
o
o
T
o
[=]
(=]
—y
wn
o
o
n
(=]
o
(=]

position (nm)

FIG. 6. Density versus position for the impulsively started pistoh-al x 10-° s. See Fig. 5 for legend.

lags the DSMC data while the density profile is in better agreement [19]. The tempera
and density profiles near the piston waltat 4 x 10~° s are shown in Figs. 7 and 8. The
temperature profiles of the two AMAR runs are again in good agreement while the der
profiles are in fair agreement.

The impulsive piston is a severe test of the AMAR method since it is well known tt
the Navier—Stokes equations do not accurately predict the profiles of strong shocks. T
because the Chapman—Enskog expansion, on which the equations are based, break
when the characteristic length scale of hydrodynamic gradients is comparable to the |
free path. A breakdown parameter for the Chapman—Enskog distribution [34] is define
B = max|zj|, [q*[}, where

n { ou; oui 2 U
5 =5l o T oy T 3900 (12)
P\ 9X; 0X%; 30Xk
1000 [o# 0 0222 @LLT% Jo oy o go opo,
L ! [P
» 800 ! L.
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*5’ | 1
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FIG. 7. Temperature versus position for the impulsively started pistor-at x 10° s. See Fig. 5 for legend.
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FIG. 8. Density versus position for the impulsively started pistoh-a#4 x 10-° s. See Fig. 5 for legend.

and

 /2m\Y2 5T
P (e R 13
G P <kT) X (13)

are the normalized stress tensor and heat flux, respectively. This parameter is computed
the particle velocities are generated in the buffer regions; the validity of the distributiol
guestionable wheB > 0.2. Inthe AMAR simulations of the impulsive piston, the maximun
value of B was 1.3-1.4. For comparison, in the simulations of thermodynamic equilibrit
B is not zero due to spontaneous fluctuations yet it did not exceed 0.13.

For the impulsive piston, the Euler AMAR program produces results similar to thc
presented above. The Euler equations are adequate for this flow since the advective |
are much greaterthan the dissipative fluxes. The main differences are that the shock thic
depends on the solver’s numerical viscosity and that outside the DSMC region the de
and temperature profiles of the shock front overlap. These differences between the |
and Navier—Stokes solutions exist independent of whether or not the simulation incluc
DSMC region.

5.3. Rayleigh Problem

This problem concerns a gas initially at the reference density and temperature movil
Mach 2 parallel to a stationary wall held at the reference temperature (Fig. 4b). This is
Rayleigh problem of an impulsively started wall shearing a gas initially at rest, as viev
in the reference frame of the moving wall. In time, the wall drags the gas to match its sf
and the resulting velocity gradient produces viscous heating near the wall. The boun
condition on the opposite side is a plane of reflection symmetry; for short times the gas
this boundary remains undisturbed. Periodic boundary conditions are applied in the ¢
directions.

The continuum grid contains 10016 x 16 cells, corresponding to a system of lengtt
12,500 nm with width and depth of 2000 nm. The DSMC region, located next to the ther
wall has width and depth of 2000 nm, and length of either 625 or 1250 nm, correspont
to either 5 or 10 continuum cells. In the larger DSMC simulation the number of partic
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remains steady at about210°. For comparison, a calculation with only the Navier—Stoke
solver and no DSMC region is also evaluated. Since the flow is entirely due to viscous ¢
an Euler AMAR is not considered.

Figure 9 shows the component of momentum density parallel to the wa&t0 x
107% s. Note that there is good agreement between the two AMAR runs. The contint
solver uses no-slip boundary conditions at the thermal wall and thus fails to capture
Knudsen velocity slip at the wall. The slip length, that is, the distance within the wall
which the velocity extrapolates to zero, is 69 nm, approximately one mean free pat
expected from kinetic theory [2]. The normal component of momentum density is shc
in Fig. 10. Because the flow in this direction is relatively weak, fluctuations are noticee
in the data points within the DSMC regions. Again, the two AMAR runs are in agreem
and differ significantly from the purely continuum run.
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FIG. 10. Normal momentum density versus position for the Rayleigh problem. See Fig. 9 for legend.
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The flow away from the wall is due to the pressure gradient that develops when
temperature rises due to viscous heating (Fig. 11). The AMAR runs reproduce the Knu
temperature jump at the wall. The distance within the wall at which the temperature prc
extrapolates to the temperature of the wall is 120 nm, approxim%ie‘r)ean free paths as
expected from kinetic theory [2]. Finally, the density profiles, shown in Fig. 12, indice
that a significant quantity of gas moves away from the wall. At the DSMC/Navier—Stol
interface, the Chapman—Enskog breakdown parameter has maximum vaBes®20
and 0.15 for the 5 cell and 10 cell DSMC regions, respectively.

The difference between the AMAR results and the purely continuum results show
Figs. 9-12 is primarily due to the Knudsen layer at the thermal wall. In order to investig
how thina DSMC layer could still describe the wall conditions quantitatively, an AMAR rt
withalx 16 x 16 cell DSMC region was analyzed. The temperature profile in Fig. 13 shc
that this thin particle layer captures the correct temperature jump but not the entire pre
At the DSMC/Navier—Stokes interface, the maximum of Chapman—Enskog breakdt
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FIG. 12. Density versus position for the Rayleigh problem. See Fig. 9 for legend.
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FIG. 13. Temperature versus position for the Rayleigh problem. AMAR run with 1-cell DSMC re@idn (
other symbols and lines as in Fig. 9.

parameter iB = 0.50, which further indicates that the DSMC/continuum interface is tc
close to the wall.

5.4. Flow Past a Sphere

As a final example, flow past a microscopic object was considered. The body is a sp
held at the reference temperature and fixed at the center of the system (Fig. 4c). Ir
conditions are Mach 1 flow at the reference density and temperature. The continuum s
uses characteristic outflow boundary conditions with no diffusive fluxes. Periodic bounc
conditions are applied in the other directions. While the flow is axially symmetric for t
simple body, the calculation is fully three dimensional to demonstrate AMAR’s capacit)
simulate large scale flows.

The continuum solver uses two grids: a fine mesh embedded within a coarse mesh
latter spans the entire system and containg 32 x 32 coarse cells covering the systen
size of 8000 nm in each direction. The fine mesh covers a cube of length 4000 nm loc
at the center of the system. The DSMC region is a cube of length 1000 nm embedded i
center of the fine mesh. The DSMC region contains somel@ particles and occupies
less than 0.2% of the total volume; see Fig. 14.

For both the continuum grid cells and the DSMC cells, the fractional volume occupiec
the sphere is computed by a recursive method (Fig. 15). A cell is bisected in each direc
each corner of these subcells lies either inside or outside the body. If all corners are occi
(or empty), the fractional occupied volume for that subcell is one (or zero). Subcells wt
are partially occupied are further subdivided and this recursion continues until the de:
accuracy is obtained. When the deepest level of recursion is reached, a subcell’s occ
volume is estimated from the number of occupied corners.

The diameter of the sphere i5®(312 nm) thus Kn=0.2. For Mach number M& 1 the
Reynolds number is Re 8.24. For these Knudsen and Reynolds numbers solutions of
Boltzmann equation predict a drag coefficienGgf = 1.95 when Mak 1 [39]. A standing
ring-eddy forms behind the sphere at:R&4 [40] but since this numerical experiment is
well below the critical Reynolds number vortices are not expected to form.
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FIG. 14. Grids used in the simulation of flow past a sphere. Two outer grids used by Navier-Stokes so
inner grid by DSMC. A finer subgrid, used within DSMC to select collision partners, is not shown.

Figure 16 shows the temperature contours for a cross-section through the center
system; Fig. 17 is a blowup of the DSMC region. These and other profiles confirm |
the flow is axially symmetric with little geometric distortion due to the rectangular gri
Irregularities in the contours are primarily due to statistical fluctuations in the DSMC reg
and finite grid resolution in the continuum region. The maximum value of the Chapm:
Enskog breakdown parameterBs=0.15, indicating that the Navier—Stokes equations a
accurate at the DSMC/continuum interface.

-.l.--...._ +
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FIG. 15. Recursive method used to calculate the occupied volume of cells near the object.
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For comparison, the temperature contours from a run with a 1500-nm DSMC region (
three times the volume) are shown in Fig. 18. There is close agreement with Fig. 16 sho
that the 1000-nm DSMC region is sufficiently large, as was expected given the small
of the breakdown parameter. The measured drag coefficiedy is 3.11 for both runs,
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FIG. 17. Temperature contours, as in Fig. 16, but within the DSMC region.



152 GARCIA ET AL.

4000

3000

2000

1000

y (nm)
o

-1000

-2000

-3000

_4000 L . . L . L
-4000 -3000 -2000 -1000 0 1000 2000 3000 4000

X {nm)

FIG. 18. Temperature contours, as in Fig. 16, but for a run with a 1500-nm DSMC region.

which is in good agreement with Bird’'s DSMC demonstration program. Finally, note tl
simulating the entire system using DSMC would require 200 million particles; a calculat
of this magnitude is barely within the reach of today’s largest supercomputers. The AM
results presented here were obtained in a few hours on a DEC Alpha workstation.

6. CONCLUDING REMARKS

In the demonstrations given here the location of the interface between particle and
tinuum algorithms is fixed initially. While for some problems the suitable interface locati
may be knowra priori, a more general approach is to have the simulation adaptively de
mine where to use each algorithm. The impulsive piston (Subsection 5.2) is a good exa
of a problem where an adaptive interface would be useful, namely the DSMC region shi
move with the shock keeping the wave front inside it. After the shock passes a given I
tion, cells can revert to the continuum algorithm, thus making the program more effic
by minimizing the size of the DSMC region.

To implement an adaptive interface, a criterion that indicates the breakdown of the «
tinuum formulation is required. Besides the breakdown parameter for the Chapman—En
distribution [34], several similar criteria have been proposed [41-43], and some have |
implemented in DSMC/Euler hybrids [18, 44]. Such an adaptive AMAR code is bei
developed and breakdown criteria will be evaluated for different physical situations.

In adaptive mesh refinement each grid level advances with its own time step, the coa
grid using the largest time step. Thus an AMR calculation can span several orders of |
nitude in both length scale and time scale; however, the finest time scales are constrain
the finest length scales. In AMAR, the DSMC region uses a time step that is comparab
but smaller than that used by the finest continuum grid. Though DSMC is uncondition.
stable the method is only accurate when the time step is a fraction of the mean collision
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Both AMR and AMAR are useful for problems that span many time scales because a s
time step is used only in those regions that require high resolution. When these region
cupy a small fraction of the system, as in the example of flow past a sphere (Subsection
most of the calculation advances at the larger time step. A variant of AMAR that uses
Schwarz alternating method [45] for computing steady flows is under investigation.

Further generalizations involve the implementation of the AMAR framework using ott
particle algorithms for applications at higher densities. The consistent Boltzmann algor
(CBA) [23, 24], a generalization of DSMC to dense gases, can be used without modifice
to the coupling scheme. An additional generalization involves having particles interac
at a distance using molecular dynamics [46]. The modification to AMAR is that the flu)
of momentum and energy produced by the finite range interaction have to be comput
order to guarantee conservation. For dense gases and liquids, the velocity distributio
particles in the buffer cells is not knovenpriori but may be generated using the Schwar
alternating method.

Once these generalizations of the AMAR methodology have been developed ther
a large number of applications that could more realistically simulate actual flows, part
larly those that involve boundaries or interfaces. For example, flows near a wall coul
represented by an atomistically rough boundary with the particle region embedded ir
layer of cells near this surface. In that way the arbitrary stick or slip boundary conditi
in the continuum representation could be replaced by a much more realistic one, pos
incorporating molecular surface scattering distributions [47]. One could also study how
boundary effects penetrate into the bulk fluid as a function of Reynolds number by incres
the width of the particle layer till the particle cells and continuum cells are equivalent.

Another possible applicationis the study of the Rayleigh—Taylor and Richtmyer—Mesh
instabilities where the interface between the two fluids would be represented by a few
ticle cell layers on each side. Besides giving a microscopically accurate representati
the interface, the spontaneous fluctuations in the particle region eliminate the need t
artificial perturbations to break the initial symmetry. A final example is the propagatior
a crack in a solid [48]. At the tip of the crack a particle representation is required bece
phenomena occur on an atomistic scale; but further away, embedding the crack in an
tic continuum model is perfectly adequate. Using AMAR would avoid the huge numl
of particles required in a conventional molecular dynamics simulation to study the I
time evolution of the crack since edge effects are eliminated when the continuum regi
sufficiently large.
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